如图,BC为圆O的直径,D为圆周上异于B、C的一点,AB垂直于圆O所在的平面,BE⊥AC于点E,BF⊥AD于点F.
如图,BC为圆O的直径,D为圆周上异于B、C的一点,AB垂直于圆O所在的平面,BE⊥AC于点E,BF⊥AD于点F.
求证:BF⊥平面ACD
证明:∵BC为圆O的直径,∴CD⊥BD,
∵AB⊥圆0所在的平面BCD,且CD⊂平面BCD,∴AB⊥CD,
又AB∩BD=B,∴CD⊥平面ABD,
∵BF⊂平面ABD,∴CD⊥BF,
又∵BF⊥AD,且AD∩CD=D,
∴BF⊥平面ACD.
【解析】由于BF⊥AD,要证BF⊥平面ACD,只需证BF⊥CD,故只需CD⊥平面ABD,由于CD⊥BD,只需CD⊥AB,由AB⊥平面BDC
【考点精析】利用直线与平面垂直的判定对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!