已知<img alt="1" src="/tk/20210512/1620760010072.png"/> (<img alt="2
已知 (
)是偶函数,当
时,
.
(1) 求的解析式;
(2) 若不等式在
时都成立,求m的取值范围.
(1) f(x)= (2)
已知函数的奇偶性求函数的解析式是函数的奇偶性常见考试题,函数f(x)为偶函数,求x<0的解析式,利用-x>0,f(x)=f(-x)去求;解决不等式恒成立问题首选方法是分离参数借助极值原理去解决,本题注意到x的范围,由于x为正,所以分离参数时,不等号的方向不变,再求最值,最后的处m的取值范围
(1)设x<0时,则-x>0,
∵f(x)为偶函数,∴f(x)=f(-x)=(-x)2-2(-x)=x2+2x.
∴f(x)= ;
(2) 由题意得x2-2x≥mx在1≤x≤2时都成立,
即x-2≥m在1≤x≤2时都成立,
即m≤x-2在1≤x≤2时都成立,
当1≤x≤2时,(x-2)min=-1,
则m≤-1.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!