21年12月西南大学课程考试[0135]《数学物理方法》 大作业(资料)
所属学校:西南大学 科目:数学物理方法 时间:2021-12-08 15:08:39西南大学培训与继续教育学院课程考试试题卷
学期:2021年秋季
课程名称【编号】:数学物理方法【0135】 A卷
:大作业 :100分
________________________________________
一、求解下列各题(共4题,选做3题,每题10分,共30分)
1. 计算
2. 解方程
3. 已知 ,求
4. 利用拉普拉斯变换求解初值问题
二、求解下列各题(共2题,选做1题,每题15分,共15分)
1. 已知解析函数 的实部为 ,求此解析函数.
2. 证明函数 在复平面上解析,并求其导数.
三、求下列积分(共3题,选做2题,每题10分,共20分)
1. ,C分别为:(1)、 ;(2)、
2.
3.
四、求解下列各题(共3题,每题5分,共15分)
1. 求幂级数 的收敛半径
2. 将函数 在 内展成 的幂级数.
3. 把函数 在 内展成洛朗(Laurent)级数..
五、求解下列各题(共2题,每题10分,共20分)
1. 试用分离变量法求解以下定解问题
答题要求:请用分离变量法求解,用其它方法求解不得分,并要求写出必要的解题步骤. 2. 求解圆内的定解问题
其中 为常数.
答题要求:可用任何方法求解,要求写出必要的解题步骤.
课程名称【编号】:数学物理方法【0135】 A卷
:大作业 :100分
________________________________________
一、求解下列各题(共4题,选做3题,每题10分,共30分)
1. 计算
2. 解方程
3. 已知 ,求
4. 利用拉普拉斯变换求解初值问题
二、求解下列各题(共2题,选做1题,每题15分,共15分)
1. 已知解析函数 的实部为 ,求此解析函数.
2. 证明函数 在复平面上解析,并求其导数.
三、求下列积分(共3题,选做2题,每题10分,共20分)
1. ,C分别为:(1)、 ;(2)、
2.
3.
四、求解下列各题(共3题,每题5分,共15分)
1. 求幂级数 的收敛半径
2. 将函数 在 内展成 的幂级数.
3. 把函数 在 内展成洛朗(Laurent)级数..
五、求解下列各题(共2题,每题10分,共20分)
1. 试用分离变量法求解以下定解问题
答题要求:请用分离变量法求解,用其它方法求解不得分,并要求写出必要的解题步骤. 2. 求解圆内的定解问题
其中 为常数.
答题要求:可用任何方法求解,要求写出必要的解题步骤.
相关说明:
1、本站提供的作业资料等可能与您需要的有些出入,请联系我们的QQ客服
2、请用我们提供的搜索功能查找您要的作业资料。如果找不到的话请到我们的学习论坛去咨询。