从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A. 至少有1个白球,都是白球
B. 至少有1个白球,至少有1个红球
C. 恰有1个白球,恰有2个白球
D. 至少有1个白球,都是红球
【答案】C
【解析】由题意知所有的实验结果为:“都是白球”,“1个白球,1个红球”,“都是红球”,再根据互斥事件的定义判断.
由题意知任取两个球所有结果“都是白球”,“1个白球,1个红球”,“都是红球”,
A、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”,故两事件不互斥;
B、“至少有1个白球”包含“1个白球,1个红球”,“至少有1个红球”包含“1个白球,1个红球”,故不是互斥事件;
C、 “恰有1个白球”发生时,“恰有2个百球”不会发生,所以为互斥事件且在一次实验中不可能必有一个发生,故是不对立事件,故C对;
D、“至少有1个白球”包含“1个白球,1个红球”和“都是白球”与“都是红球”是互斥且对立事件,故D不对;
故选:C.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!