如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.

所属学校:学历教育 科目:初中数学 2024-08-05 09:03:10 初中数学

如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.

(1)求证:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面积.

1

【答案】

1

【解析】

(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;

(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.

(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;

(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC=1=2,∴矩形ABCD的面积=AB•BC=6×2=3

版权声明

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系本站我们将配合处理!

下一篇 :返回列表

分享: