如图,在⊙O直径AB的延长线上任取一点C,过点C做直线CE与⊙O交于点D、E,在⊙O上取一点F,使<img alt="1" src="/tk/20210512/16
如图,在⊙O直径AB的延长线上任取一点C,过点C做直线CE与⊙O交于点D、E,在⊙O上取一点F,使=
, 连接DF,交AB于G.
(1)求证:E、D、G、O四点共圆;
(2)若CB=OB,求的值.
(1)证明:∵∠EDF的度数等于的度数的一半,而
=
,
∴∠EDF的度数等于的度数.
∵∠AOF的度数等于的度数,
∴∠EDF=∠AOE,
∵∠COE与∠AOE互补,
∴∠COE与∠EDF互补,
∴E、D、G、O四点共圆;
(2)解:由(Ⅰ)知E、D、G、O四点共圆,
∴CE•CD=CO•CG,
∵CE•CD=CA•CB,
∴CA•CB=CO•CG,
∵CB=OB,
∴=
=
.
(1)证明∠EDF=∠AOE,利用∠COE与∠AOE互补,可得∠COE与∠EDF互补,从而可得E、D、G、O四点共圆;
(2)利用四点共圆,结合割线定理,即可求的值.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!