已知函数f(x)=x2+mx﹣|1﹣x2|(m∈R),若f(x)在区间(﹣2,0)上有且只有1个零点,则实数m的取值范围是__________.
已知函数f(x)=x2+mx﹣|1﹣x2|(m∈R),若f(x)在区间(﹣2,0)上有且只有1个零点,则实数m的取值范围是__________.
【答案】
-1≤x<0时,
,
-2<x<-1时,f(x)=mx+1,
∴当x=-1时,f(-1)=1-m,
当1-m=0,即m=1时,符合题意,
当1-m>0时,f(x)在(-1,0)有零点,
∴f(-2)=-2m+1≥0,解得:
,
当1-m<0,在(-2,0)上,函数与x轴无交点,
故答案为:
.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
