矩形ABCD中<img alt="1" src="/tk/20210512/1620768350044.png"/>平分<img alt=&q
矩形ABCD中
平分
交BC于
平分
交AD于F.
(1)说明四边形AECF为平行四边形;
(2)求四边形AECF的面积.

(1)见解析;(2)30cm2
【解析】(1)由四边形ABCD是矩形可得AD∥BC(即AF∥CE),AB∥CD,由此可得∠BAC=∠ACD,结合AE平分∠BAC,CF平分∠ACD可得∠EAC=∠FCA,即可得到AE∥CF,从而可得四边形AECF是平行四边形;
(2)如图,过点E作EO⊥AC于点O,结合∠B=90°及AE平方∠BAC可得EO=EB,证Rt△ABE≌Rt△AOE可得AO=AB=6,在Rt△ABC中由勾股定理易得AC=10,从而可得OC=4,设CE=x,则EO=BE=BC-CE=8-x,这样在Rt△OEC中由勾股定理建立方程,解方程即可求得CE的值,这样就可求出四边形AECF的面积了.
(1)∵四边形ABCD是矩形,
∴AD∥BC(即AF∥CE),AB∥CD,
∴∠BAC=∠ACD,
又∵AE平分∠BAC,CF平分∠ACD,
∴∠EAC=∠FCA,
∴AE∥CF,
∴四边形AECF是平行四边形;
(2)过点E作EO⊥AC于点O,
∵∠B=90°,AE平分∠BAC,
∴EO=BO,
∵AE=AE,
∴Rt△ABE≌Rt△AOE,
∴AO=AB=6,
∵在Rt△ABC,AC=
,
∴OC=AC-AO=4(cm),
设CE=x,则EO=BE=BC-CE=8-x,
∴在Rt△OEC中由勾股定理可得:
,解得:
,
∴EC=5,
∴S四边形AECF=CE·AB=5×6=30(cm2).

版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
上一篇 : 试论述影响问题解决的因素,并举例说明。
下一篇 :返回列表
